kmp算法前置技能:无
kmp算法是一种高效的字符串匹配算法,对于在给定长为n的主字符串S里查找长为m的模式字符串P,可以将时间复杂度从O(n*m)优化为O(n+m)。
kmp算法的核心是一个被称为部分匹配表(Partial Match Table)(下文简称为PMT)的数组。对于一个字符串“abababca”来说,它的PMT如下图的value所示,PMT的值是字符串的前缀集合与后缀集合的交集中最长元素的长度。
在主字符串S=“ababababca”中查找匹配字符串P=“abababca”。如果在j处字符不匹配,那么由于前面所说的匹配字符串PMT的性质,主字符串中i指针之前的PMT[j-1]位就一定与匹配字符串的第0位至第PMT[j-1]位是相同的。
以图中的例子来说,在i处失配,那么主字符串和匹配字符串的前6位就是相同的。又因为匹配字符串的前6位,它的前4位前缀和后4位后缀是相同的,所以我们推知主字符串,i之前的4位和匹配字符串开头的4位是相同的。就是图中的灰色部分,那这部分就不用比较了。
有了前面的思路,我们就可以使用PMT加速字符串的查找了。如果是在j位失配,那么影响j指针回溯的位置其实是第j-1位的PMT值,所以为了方便,我们不直接使用PMT数组,而是将PMT数组向后移一位。我们把新得到的这个数组称为next数组。
在上面的例题中,next数组如下图所示。其中我们在把PMT向后移的过程中,第0位的值我们设为-1,目的是便于编程。
其实,求next数组的过程完全可以看成字符串匹配的过程,即以匹配字符串为主字符串,以匹配字符串的前缀为目标字符串,一旦字符串匹配成功,那么当前的next值就是匹配成功的字符串的长度。具体来说,就是从匹配字符串的第1位(注意,不包括第0位)开始对自身进行匹配运算。在任一位置,能匹配的最长长度就是当前位置的next值,如下图所示。
例题:
HDU1711 Number SequenceProblem Description
Given two sequences of numbers: a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1Sample Output
6 -1参考代码:
#include#include int n, m;int a[1000005], b[10005], next[10005];void buildnext(){ next[0] = -1; int i = 0, j = -1; while (i < m) { if (j == -1 || b[i] == b[j]) next[++i] = ++j; else j = next[j]; }}int kmp(){ buildnext(); int i = 0, j = 0; while (i < n && j < m) { if (j == -1 || a[i] == b[j]) { ++i; ++j; } else j = next[j]; } if (j == m) return i - j; else return -1;}int main(){ int t, i, ret; scanf("%d", &t); while (t--) { memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); memset(next, 0, sizeof(next)); scanf("%d %d", &n, &m); for (i = 0; i < n; ++i) scanf("%d", &a[i]); for (i = 0; i < m; ++i) scanf("%d", &b[i]); ret = kmp(); if (ret >= 0) printf("%d\n", ret + 1); else printf("-1\n"); } return 0;}
参考资料: